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SYNOPSIS 

Process modeling is essential for the control of optimization and an on-line prediction is 
very useful for process monitoring and quality control. Up to now, no satisfactory methods 
have been found to model an industrial meltblown process since it is of highly dimensional 
and nonlinear complexity. In this article, back-propagation neural networks (BPNNs) were 
investigated for modeling the meltblown process and on-line predicting the product spec- 
ifications such as fiber diameter and web thickness. The feasibility of this application was 
successfully demonstrated by agreement of the prediction results from the BPNN to the 
actual measurements of a practical case. The network inputs included extruder temperature, 
die temperature, melt flow rate, air temperature at  die, air pressure at  die, and die-to- 
collector distance (DCD). The output of the fiber diameter was obtained by neural computing. 
The network training was based on 160 sets of the training samples and the trained network 
was tested with 70 sets of test samples which were different from the training data. This 
research is preliminary and of industrial significance and especially valuable for the optimal 
control of advanced meltblown processes. 0 1996 John Wiley & Sons, Inc. 

INTRODUCTION 

Meltblowing, as shown in Figure 1, is a one-step 
process to extrude melt filaments out of orifices and 
directly make microfiber nonwovens from polymers 
or resins with the aid of high-velocity hot air to at- 
tenuate the filaments. Meltblowing has become an 
important industrial technique because of its ability 
to produce fabrics of microfiber structure, which are 
ideally suited for filtration media, thermal insula- 
tors, battery separators, and oil sorbents. There is 
no doubt that the great market potential comes from 
the excellent and high-performance quality, which 
arises from much stricter requirements for the con- 
trol over the meltblown process. Much work has 
been carried out in the last 20 years, mainly focused 
on the following: 

1. Experimental studies on the relationships of 
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processing variables, die geometry, and web 
structure and its 

2. Improvements of the process to obtain high- 
quality webs for specific  application^.^*^ 

3. Attempts to model the process physically and 
mathemati~ally.~.~ 

The meltblowing process is similar to melt spin- 
ning, which has been investigated more comprehen- 
sively. The primary difference between meltblowing 
and conventional melt spinning is that the melt- 
blowing process uses hot air with high velocity, 
rather than a draw roll in melt spinning, to provide 
the attenuating force in the process. The force of 
the air rapidly attenuates the melt filaments from 
an approximately 400 micron diameter at the exits 
of die orifices down to a final fiber diameter that 
can be less than 1 micron. Without a draw roll, the 
fibers are meltblown at  such high speed that it is 
difficult to use a mechanical windup, which makes 
the meltblowing process more complicated. The 
complexity results mostly from the instability of fi- 
ber formation caused by lack of a draw roll and the 
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Figure 1 Schematic of the meltblown process. 

effect of two convergent streams of high-velocity hot 
air on the fiber formation. The fiber-forming mech- 
anism is very complicated and is related to the fron- 
tier research of different disciplinary areas, such as 
heat and mass transfer in a hot air jet field, the die 
swell of extruded melt filament under the attenua- 
tion effect of two convergent streams of high-velocity 
hot air, fiber forming, and breakage in the air jet 
field. Experimental research has been shown that 
the quality of the meltblown web depends on many 
processing variables such as die temperature, air 
temperature, air flow rate, extruder temperature, die- 
to-collector distance, polymer throughput rate, resin 
melt flow rate (MFR), and die geometry parameters 
such as die orifice diameter, LID ratio, nosetip angle, 
air gap, and nosetip setback. Therefore, meltblowing 
is a highly complex, multivariable, and nonlinear 
process, leading to the extreme difficulty in theo- 
retically modeling the process. Most of the previous 
work was to a large extent based on idealized models 

Y 
f 

that were far from the practical process and of little 
industrial significance. 

Fortunately, the fast-growing neural network 
methodology of artificial intelligence provides a 
novel and powerful way to model such a complex 
system. In this article, the application of neural net- 
works to the meltblown process is initially presented 
and discussed. 

NEURAL NETWORK METHODOLOGY 

A neural network is a computer system which mim- 
ics the structure of human brain and imitates in- 
telligent behavior. It consists of many simple and 
highly connected neurons (processing elements or 
nodes) and processes information by its dynamic- 
state response to external inputs. It can deal with 
the problems of highly dimensional and nonlinear 
systems. The parallel distributed processing of the 

X Bias 

Figure 2 A typical backpropagation network. 
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Figure 3 A neural element (a processing element). 

neural networks promises high computation rates 
provided by the massive parallelism, a greater degree 
of robustness or fault tolerance due to the distributed 
representation, and the ability to adapt and to con- 
tinue to improve performance. The learning is based 
on samples, so it is especially suitable for the com- 
plicated process with a nontransparent mechanism. 
Therefore, neural networks, as one of most active 
branches of artificial intelligence in recent years, 
have been widely used in the process industries, in- 
cluding fault diagnosis and pattern recognition, 
process control and identification, system modeling, 
and on-line measurement and prediction. 

The architecture of a neural network depends on 
three key factors: network topology, node charac- 
teristics (activation functions), and the learning al- 
gorithm (learning rule). There are different types 
of neural networks and, among them, back-propa- 
gation neural networks ( BPNNs) are the most pop- 
ular and widely used in various fields. In this article, 
BPNNs were investigated to model the meltblown 
process and predict the fiber diameter. 

A BPNN, as shown in Figure 2, is composed of 
one input layer, one output layer, and one (or more) 
hidden layer (s) . The output of the threshold ele- 
ment (Bias) is equal to 1. There is no theoretical 
limit on the number of hidden layers but typically 
there are one or two. Each hidden layer has an ad- 
justable number of nodes. The number of nodes in 
input and output layers depends heavily on the 
properties of the problem that one is studying. The 
weights (W,]) on connections are adjustable and 
their initial values are generally obtained from a 
randomizing routine. 

The inputs enter in the first layer and its outputs 
are exactly same as its inputs, and their weighted 
sums (see Fig. 3)  of first layer outputs become the 
inputs to the second layer (first hidden layer), which 

are transferred through a transfer function or ac- 
tivation function, generally using a sigmoid function 
(see Fig. 4), to obtain the neuron outputs. The 
weighted sum of these outputs forms the inputs to 
the next layer (or output layer). Forward calculation 
is conducted in the same way as for the second layer 
until the outputs of the neural network are finally 
reached. This is so-called feed-forward calculation 
of BPNNs and can be expressed by the following 
equations: 

For the input layer, 

where x :  is the input of the ith node in the input 
layer for sample k and 0: is its output. 

For the hidden layer, 

n 

net: = 2 wil-of + wio 

of = f ( n e t : )  

1=1 

where net: is the input of node i for sample k ;  wil, 

the connection weight from the previous layer node 
1 to node i; of and o f ,  the outputs of the previous 
layer node 1 and current layer node i, respectively; 
wio, the threshold value of node i; and n, the node 
number of the previous layer. 

During the training (or learning) sequence, the 
final outputs of neural networks are calculated feed- 
forward as described above. They are compared with 
the actual outputs of training samples from mea- 
surement to yield an error profile. The error profile 
is propagated back through the network by a learn- 
ing rule to update the weights on the connections. 
In this article, an improved back-propagation al- 
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Figure 4 Sigmoid function. 
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Figure 5 
tual measurement. 

Comparison of predicted fiber diameter to ac- 

gorithm was used for training the network. The 
weights were adjusted in such a way that minimized 
the mean square error J: 

P 

Min J = 2 E, 
i = l  

where P is the number of training samples and Ei 
is the sum of the square error of training sample i: 

where Nout denotes the number of the nodes in the 
output layer, t; is the prediction value of the j t h  
output of sample i, while yf is the actual value of 
t h e j t h  output of sample i. The weight change on 
iteration q ( A W,) was calculated according to 

20.0 1 
17.5 

- 15.0 

12.5 
v 5 
L 

” aJ 
i 10.0 
0 
D 

0)  n - 5.0 

.- 
7.5 - 

L 

.- 

2.5 

extruder temp (“C) 

Figure 6 
diameter. 

The effect of extruder temperature on fiber 

18.0 
exlrueer temp 

16.0 

- 14.0 

d 12.0 

; 10.0 

.: 8.0 

c 

D 

& 6.0 
D .- 
c 

4.0 

2 .o 

240 260 280 300 320 340 
0.0 . I . .  . . . I - ’ I , .  * . . . . ’ -  

air temp. at die (‘C) 

Figure 7 
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The effect of air temperature at die on fiber 

where Mq is the overall gradient; a, the momentum 
factor aiding in convergence; and q, the step size, 
determined through the Golden Section. The search 
interval was determined by a scanning and brack- 
eting procedure. However, as the iteration gets closer 
to the optimum, the conjugate gradient was intro- 
duced to improve the convergence rate. The iteration 
was based on 

12.0 
extruder temp. 

28 32 -6.0 

melt throdghput rote (r/rnin) 
I 

Figure 8 
diameter. 

The effect of melt throughout rate on fiber 



1610 SUN ET AL. 

10.0 

8.0 - - 
5 6.0 1 
v 

L 

M 
8 

4.0 - 
E .- 
D 
& 2.0 - 
n 
c 
.- 

17.5 7 1 

” _ _  

- -  n 

4 - 
0 - 

- 
extruder temperature 

15.0 

h 12.5 - 10.0 
5 
g 7.5 

B 

3 

5 

- 
0 

5.0 

2.5 

0.0 

-2,s 

0.0 - . . 
: 

-5.0 0 . 5  .A 3.14 0.16 

air pressure at die (MPa) 

Figure 9 
ameter. 

The effect of air pressure at die on fiber di- 

- 340% - s0o-c 
-3wc Ppppp 310% 
- 3 w c  -320’t 
u r u 3 7 o Y  w 3 3 o . c  

where M‘ is the overall conjugate gradient. If the 
objective J was less than the preset positive toler- 
ance, then the training procedure stopped. 

To build up a practical neural network, the first 
task is to study the process and analyze its cause- 
effect relationships between various variables and 
to determine the inputs and outputs, then to obtain 
sufficient training samples for the training sequence. 
The sample acquirement is a time-consuming pro- 
cess, which is very important because neural net- 
works learn and obtain their problem-solving ability 
from the training samples. 

The input variables in this research consisted of 
die temperature, air temperature at die, polymer 
melt throughput rate, extruder temperature, air 
pressure at die, and die-to-collector distance. The 
output was the fiber diameter. By comparison of 
several network topology structures (6-3-1,6-4-1,6- 
5-1, 6-6-1,6-4-3-1, etc.) and different transfer func- 
tions (sigmoid, quadratic), the network 6-4-1 (six 
nodes in the input layer, four nodes in the hidden 
layer, two nodes in the output layer) was chosen as 
the final structure, using a sigmoid function as its 
transfer function. Because of the wide distribution 
of the data of meltblown processes, it was necessary 
to pretreat the original input and output data. An 
improved normalization method, as shown below, 
was presented to improve prediction precision. For 
input data, 

where a and b are adjustable constants between 0 
and 1, X and Yare, respectively, the input and out- 
put vectors after normalization, the subscripts of 
“in” and “out” are, respectively, the actual input 
and output vectors, and “min” and “max” are, re- 
spectively, the minimum and maximum values of 
input or output vectors. 

For measuring the mean difference between the 
predicted and actual outputs for the testing patterns, 
the following root mean square error (rms) was used 

; f;‘ (yi” - t y  
p = 1  j =  1 

rms = 
P 

The whole training procedure was to adjust all 
weights on connections of the network according to 
the learning rule. The iteration went on until the 
computed outputs reached the required precision of 
agreement to the actual outputs. 

EXPERIMENTAL 

The experiments were carried out using the No. 1 
Production Line of Beijing CHALLEN Nonwoven 
Tech. Corp. PP pellets were from Xingdu Plastic 
Inc. in Beijing with MFR 60. The ambient temper- 
ature is 25 f 25°C. The web fiber diameter was the 
average of 100 random fibers of 10 web samples (60 
X 15 mm) using an XSZ60 biomicroscope. 

For output data, 
Figure 10 
diameter. 

The effect of die-collector-distance on fiber 
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As mentioned above, neural networks learn on 
the basis of actual samples, so it is necessary to ob- 
tain sufficient training samples to build up effective 
ones. To do so efficiently and comprehensively, an 
interval orthogonal test method was presented to 
design the experiments for collecting training sam- 
ples. The melt temperature and gas temperature 
were divided into severaI match intervals, and for 
each interval, the orthogonal test method [ LZ7 (9 
X 3'), see Table I ]  was used for the experimental 
design. 

RESULTS AND DISCUSSION 

One hundred sixty sets of data were used as training 
samples and the trained neural network was tested 
by 70 sets of data which were different from the 
training samples. The test results (Fig. 5 )  show a 
good agreement to the actual measurement. The 
maximum absolute error between the predicted fiber 
diameter and the actual value was less than 1.5 pm. 
It has reached the precision of the actual measure- 
ment used in this study. If higher precision is re- 
quired, more accurate training samples (or mea- 
surement) should be provided. 

Using the tested neural network, we could predict 
the effect of process variables on fiber diameter. The 
effect of extruder and air temperature is shown in 
Figures 6 and 7. The fiber diameter decreased as air 
temperature and extruder temperature increased. 
That is due to the more easy melt flow at  elevated 
temperatures. Figure 8 shows the relationship be- 
tween the meIt throughput rate and fiber diameter. 
As the melt throughput increased, the diameter in- 
creased. As shown in Figure 9, the increase in air 
pressure resulted in a decrease in fiber diameter. 
That is due to the fact that the higher the air pres- 
sure the higher the attenuating force on the melt 
filaments, which leads to a decrease in fiber diam- 
eter. Figure 10 shows that the filament attenuation 
is completed within a die-to-collection distance of 
0.07 m. All these prediction results are consistent 
with the previous findings, which indicates that 
neural networks can be used to extract and describe 
the intrinsic relationships of a highly complicated 
process from sufficient discrete system data and that 
the BPNN is effective for modeling and predicting 
meltblown processes. 

The outputs of a neural network are not limited 
to the fiber diameter. They can be web thickness, 

basic weight, and other web specifications according 
to the different production processes and require- 
ments. The most valuable result of this research is 
not only a development of a practical neural network 
for the CHALLEN meltblown line, but also a tech- 
nique which has been proved to be suitable for mod- 
eling and on-line predicting of the meltblowing pro- 
cess. It is valuable for the optimal control of the 
process and of practical significance to advanced 
meltblown processes. Further research is suggested 
to consider the effect of different raw materials and 
ambient temperature, because they may influence 
the performance of meltblown webs significantly. 

CONCLUSIONS 

The BPNN developed in this research is suitable 
for on-line modeling and predicting the meltblown 
process. It is very practical and useful for the process 
optimum and quality control not only for the melt- 
blowing process but also for other nonwoven pro- 
cesses such as the spunbonding process, spunlace 
process, and so on. The enhanced normalization 
method presented above notably improved the net- 
work's prediction precision for the meltblown pro- 
cess. The interval orthogonal test method is a very 
effective and efficient way to obtain the comprehen- 
sive training samples of neural networks. 

This project was partially supported by the Beijing 
CHALLEN Nonwoven Tech. Corp., Beijing. 
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